
Single-Trace Attacks on Keccak

Matthias J. Kannwischer1, Peter Pessl2, Robert Primas3

1Radboud University, Nijmegen
2Graz University of Technology (now with Infineon Technologies)
3Graz University of Technology

Side-Channel Attacks on Hash Functions?

� Plain hashing has no secrets, but there are keyed uses

� HMAC? Classic DPA setting, threat is obvious. . .

� Keccak (SHA3/SHAKE) found ample new uses involving secrets

� . . . especially in post-quantum cryptography

1 Single-Trace Attacks on Keccak — CHES 2020

Side-Channel Attacks on Hash Functions?

� Keccak uses in PQC include

� derivation of a shared secret in a KEM

� expansion of a secret seed in KEMs and signatures

� hash-based signatures

� Above: side-channel attacker is limited to a single execution

� at most averaging, but still no DPA

Are attacks even possible? Are countermeasures still needed?

2 Single-Trace Attacks on Keccak — CHES 2020

Our Contribution

� Practical single-trace attack on Keccak (software) implementations

� Soft-analytical side-channel attack (SASCA)

1. Template matching: retrieve probabilities of intermediates

2. Belief propagation: combine all probabilities to infer most likely key

� thus far: mainly applied to AES, but Keccak structurally very different

� Attack outcome

� key-recovery in a large array of settings, countermeasures cannot be omitted

� factors influencing the success rate:

key size, bit width of device, structure of input

3 Single-Trace Attacks on Keccak — CHES 2020

Keccak

� Sponge construction, 1600-bit state

� Keccak-f permutation

� θ - add column parities

� ρ - rotate lanes

� π - reorder lanes

� χ - SBox

� ι - add round constant

0r

0c
f f f f

⊕

m0

⊕

m1 H0 H1

...

Absorb Squeeze

4 Single-Trace Attacks on Keccak — CHES 2020

Keccak

� Sponge construction, 1600-bit state

� Keccak-f permutation

� θ - add column parities

� ρ - rotate lanes

� π - reorder lanes

� χ - SBox

� ι - add round constant

4 Single-Trace Attacks on Keccak — CHES 2020

Keccak

� Sponge construction, 1600-bit state

� Keccak-f permutation

� θ - add column parities

� ρ - rotate lanes

� π - reorder lanes

� χ - SBox

� ι - add round constant

x

y z z

4 Single-Trace Attacks on Keccak — CHES 2020

Keccak

� Sponge construction, 1600-bit state

� Keccak-f permutation

� θ - add column parities

� ρ - rotate lanes

� π - reorder lanes

� χ - SBox

� ι - add round constant

4 Single-Trace Attacks on Keccak — CHES 2020

Keccak

� Sponge construction, 1600-bit state

� Keccak-f permutation

� θ - add column parities

� ρ - rotate lanes

� π - reorder lanes

� χ - SBox

� ι - add round constant

4 Single-Trace Attacks on Keccak — CHES 2020

Keccak

� Sponge construction, 1600-bit state

� Keccak-f permutation

� θ - add column parities

� ρ - rotate lanes

� π - reorder lanes

� χ - SBox

� ι - add round constant

4 Single-Trace Attacks on Keccak — CHES 2020

Keccak

� Sponge construction, 1600-bit state

� Keccak-f permutation

� θ - add column parities

� ρ - rotate lanes

� π - reorder lanes

� χ - SBox

� ι - add round constant

4 Single-Trace Attacks on Keccak — CHES 2020

Attack Setting

� Unprotected software implementation on a µC

� (Part of) the input is secret

� and used only once

� Power measurements of a single execution

� no differential SCA

� have to use (some sort of) templates

0r

0c
f f f

⊕

m0

⊕

m1 H0

...

5 Single-Trace Attacks on Keccak — CHES 2020

Template Attacks on Hash Functions

� Typical restrictions of template attacks

� need templating device with known key

� poor portability of templates between devices

� Same for Keccak?

� often multiple calls inside a PK scheme, some with fully known data

� message hash during signing, re-encryption in decapsulation, . . .

Profiling directly on target device!

no separate profiling device needed, no portability problems

6 Single-Trace Attacks on Keccak — CHES 2020

Step 1: Template Matching

� Templating target: all loads/stores

� HW leakage along lanes

� assign probability vector to each part 64

� Now: combine all side channel info to find most likely key

� efficient method: Soft Analytical Side-Channel Attacks (SASCA)

[Veyrat-Charvillon et al., ASIACRYPT 2014]

7 Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

� variable nodes

� factor nodes

� example: X ⊕ Y = Z

2. incorporate leakage information in graph

3. run Belief Propagation

� goal: find marginals of variables

� message passing principle

� simplest version: enumerate inputs

� important: avoid circular reasoning

X

Y

Z

8 Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

� variable nodes

� factor nodes

� example: X ⊕ Y = Z

2. incorporate leakage information in graph

3. run Belief Propagation

� goal: find marginals of variables

� message passing principle

� simplest version: enumerate inputs

� important: avoid circular reasoning

X

Y

Z

8 Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

� variable nodes

� factor nodes

� example: X ⊕ Y = Z

2. incorporate leakage information in graph

3. run Belief Propagation

� goal: find marginals of variables

� message passing principle

� simplest version: enumerate inputs

� important: avoid circular reasoning

X

Y

Z

8 Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

� variable nodes

� factor nodes

� example: X ⊕ Y = Z

2. incorporate leakage information in graph

3. run Belief Propagation

� goal: find marginals of variables

� message passing principle

� simplest version: enumerate inputs

� important: avoid circular reasoning

Z

Y

X

8 Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

� variable nodes

� factor nodes

� example: X ⊕ Y = Z

2. incorporate leakage information in graph

3. run Belief Propagation

� goal: find marginals of variables

� message passing principle

� simplest version: enumerate inputs

� important: avoid circular reasoning

X

Z

Y

8 Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

� variable nodes

� factor nodes

� example: X ⊕ Y = Z

2. incorporate leakage information in graph

3. run Belief Propagation

� goal: find marginals of variables

� message passing principle

� simplest version: enumerate inputs

� important: avoid circular reasoning

Y

Z

X

8 Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

� variable nodes

� factor nodes

� example: X ⊕ Y = Z

2. incorporate leakage information in graph

3. run Belief Propagation

� goal: find marginals of variables

� message passing principle

� simplest version: enumerate inputs

� important: avoid circular reasoning

Y

Z

X

8 Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

� variable nodes

� factor nodes

� example: X ⊕ Y = Z

2. incorporate leakage information in graph

3. run Belief Propagation

� goal: find marginals of variables

� message passing principle

� simplest version: enumerate inputs

� important: avoid circular reasoning

Z

Y

X

8 Single-Trace Attacks on Keccak — CHES 2020

A First Factor Graph of Keccak

� Bitwise description

� each bit after each step is a variable

� Terrible performance. . .

� leakage on bytes/words, not bits

� lots of information lost during propagation

9 Single-Trace Attacks on Keccak — CHES 2020

Solution: Clustering

� Cluster multiple bits in a single variable node

� bits along a lane

� ideally: no spreading of side-channel info

� Cluster size vs. resource usage

� runtime and memory: exp. in cluster size

� we support 8-bit and 16-bit clusters

64

10 Single-Trace Attacks on Keccak — CHES 2020

Clustering: Misalignment

� Problem: misalignment of clusters

� previous SASCA on AES: operations on bytes

� Keccak operations not aligned

� Example: A⊕ ROT(B, 4)

� Need to split clusters

� requires extraction of marginals

ROT(B, 4)

A

11 Single-Trace Attacks on Keccak — CHES 2020

Clustering: Handling θ

� Computation of column parity

� 5-input ⊕ node (efficient propagation)

� enumeration of all possible values: 240 (8-bit cluster)

� solution: fast convolution of distributions using

Walsh-Hadamard transform

I

I

I

I

I

P

12 Single-Trace Attacks on Keccak — CHES 2020

Clustering: Further Considerations

� Handling χ

� break up clusters to deal with invertability

� Handling 32-bit leakage

� found efficient method to combine leakage

� convolution instead of enumeration

13 Single-Trace Attacks on Keccak — CHES 2020

Clustering: Further Considerations

� Handling χ

� break up clusters to deal with invertability

� Handling 32-bit leakage

� found efficient method to combine leakage

� convolution instead of enumeration

A B C D

13 Single-Trace Attacks on Keccak — CHES 2020

Attack Runtime

� Open-source Python implementation of BP on Keccak

https://github.com/keccaksasca/keccaksasca

� Restriction to first two rounds of Keccak-f

� Runtime per BP iteration (updating all nodes once)

� 8-bit clusters: ∼ seconds on single core

� 16-bit clusters: ∼ 1 minute using 44 cores

� 8-bit clusters sufficient in most cases

� BP: iterative algorithm, repeat until convergence.

� typically < 10 iterations

14 Single-Trace Attacks on Keccak — CHES 2020

https://github.com/keccaksasca/keccaksasca

Attack Evaluation

� Goal: recover secret input of Keccak-f

� Evaluation tool: leakage simulations

� noisy HW-leakage of loads/stores (at typical locations)

� for 8, 16, and 32-bit implementations

� vary noise σ, retrieve success rate

� Analyze impact of key size

� evaluate 128 and 256-bit keys

15 Single-Trace Attacks on Keccak — CHES 2020

On the Impact of the Input State

� Keccak-f input: part secret, part known

� Content of public part impacts success rate!

� All-zero public input

� state = secret || 0000...

� example: SHAKE(128-bit seed)

� Random public input

� state = secret || rand

� example: H(msg || key)

� Attacks with Random public input work much better!

0r

0c
f f f

⊕

m0

⊕

m1 H0

...

16 Single-Trace Attacks on Keccak — CHES 2020

But why though?

� Reason: ⊕ of θ-effect T

� Observation: knowing T allows key recovery

� All-zero public input

� T added 4 times to 0

� same operation 4 times, averaging

� Random public input

� T added to 4 different values

� similar to a DPA using 4 traces

I

I

I

I

I

OO

OO

OO

OO

OO

secret

known

known

known

known

Tθ - effect

17 Single-Trace Attacks on Keccak — CHES 2020

But why though?

� Reason: ⊕ of θ-effect T

� Observation: knowing T allows key recovery

� All-zero public input

� T added 4 times to 0

� same operation 4 times, averaging

� Random public input

� T added to 4 different values

� similar to a DPA using 4 traces

I

I

I

I

I

OO

OO

OO

OO

OO

secret

0

0

0

0

Tθ - effect

17 Single-Trace Attacks on Keccak — CHES 2020

But why though?

� Reason: ⊕ of θ-effect T

� Observation: knowing T allows key recovery

� All-zero public input

� T added 4 times to 0

� same operation 4 times, averaging

� Random public input

� T added to 4 different values

� similar to a DPA using 4 traces

I

I

I

I

I

OO

OO

OO

OO

OO

secret

0xAB

0x81

0x09

0x29

Tθ - effect

17 Single-Trace Attacks on Keccak — CHES 2020

Results: 8-bit Device

8-bit HW leakage, real σ ≈ 0.5 (XMEGA128D4)

0 1 2 3
0

0.5

1

S
u
c
c
e
s
s
 R

a
te

128bit

256bit

Random public input

0 1 2 3
0

0.5

1

S
u
c
c
e
s
s
 R

a
te

128bit

256bit

All-zero public input

18 Single-Trace Attacks on Keccak — CHES 2020

Results: 16-bit Device

16-bit HW leakage, real σ ≈ ?

0 1 2 3
0

0.5

1

S
u
c
c
e
s
s
 R

a
te

128bit

256bit

Random public input

0 1 2 3
0

0.5

1

S
u

c
c
e

s
s
 R

a
te

128bit

All-zero public input

19 Single-Trace Attacks on Keccak — CHES 2020

Results: 32-bit Device

32-bit HW leakage, real σ ≈ 0.4 - 3 (STM32F303)

0 1 2 3
0

0.5

1

S
u
c
c
e
s
s
 R

a
te

128bit

Random public input

20 Single-Trace Attacks on Keccak — CHES 2020

Conclusion

Single-trace attacks are a considerable threat . . .

� especially for 8/16-bit implementations, situation less clear for 32-bit devices

But . . .

� we used a simple leakage model (simulations with univariate HW templates)

� more sophisticated attacker will fare better (remember: on-device profiling)

Must always include (basic) countermeasures . . .

� hiding (shuffling, dummy operations, etc.) effective

� masking also an option, but some restrictions

21 Single-Trace Attacks on Keccak — CHES 2020

https://github.com/keccaksasca/keccaksasca

Thank you!

https://github.com/keccaksasca/keccaksasca

