Single-Trace Attacks on Keccak

Matthias J. Kannwischer!, Peter Pessl?, Robert Primas3

1Radboud University, Nijmegen
2Graz University of Technology (now with Infineon Technologies)
3Graz University of Technology

Side-Channel Attacks on Hash Functions?

e Plain hashing has no secrets, but there are keyed uses
e HMAC? Classic DPA setting, threat is obvious. ..

e Keccak (SHA3/SHAKE) found ample new uses involving secrets

e .. .especially in post-quantum cryptography

Single-Trace Attacks on Keccak — CHES 2020

Side-Channel Attacks on Hash Functions?

o Keccak uses in PQC include

e derivation of a shared secret in a KEM
e expansion of a secret seed in KEMs and signatures
e hash-based signatures

e Above: side-channel attacker is limited to a single execution

e at most averaging, but still no DPA

Are attacks even possible? Are countermeasures still needed?

Single-Trace Attacks on Keccak — CHES 2020

Our Contribution

e Practical single-trace attack on Keccak (software) implementations
e Soft-analytical side-channel attack (SASCA)

1. Template matching: retrieve probabilities of intermediates
2. Belief propagation: combine all probabilities to infer most likely key

e thus far: mainly applied to AES, but Keccak structurally very different

e Attack outcome

e key-recovery in a large array of settings, countermeasures cannot be omitted
e factors influencing the success rate:
key size, bit width of device, structure of input

Single-Trace Attacks on Keccak — CHES 2020

e Sponge construction, 1600-bit state

n Single-Trace Attacks on Keccak — CHES 2020

mo mq HO H1
o 4@_>ﬁ D o) T o) T .
. f f f fl-
0¢ —— > > >
— — —
Absorb Squeeze

e Sponge construction, 1600-bit state

o Keccak-f permutation

y yA
A 4 state

n Single-Trace Attacks on Keccak — CHES 2020

e Sponge construction, 1600-bit state

e Keccak-f permutation

e O - add column parities

n Single-Trace Attacks on Keccak — CHES 2020

(O]
=
]
o
%]
5=
0
1
o
o
O
—
nr
.2
+
O
3
.
)
)]
c
o
O
(O]
ey}
c
[}
o
wn
[]

-f permutation

o Keccak

e O - add column parities

e p - rotate lanes

n Single-Trace Attacks on Keccak CHES 2020

[2 [] X
e Sponge construction, 1600-bit state . ? =
o
e Keccak-f permutation 2 . £© "“2 ®
e 0 - add column parities hdl 2 .
e p - rotate lanes
e 7 - reorder lanes LY & Q\
Lds N
C 0 ®
e MR
e [® \

n Single-Trace Attacks on Keccak — CHES 2020

e Sponge construction, 1600-bit state

e Keccak-f permutation
e O - add column parities
e p - rotate lanes
e 7 - reorder lanes

X - SBox S

o
o)
o

n Single-Trace Attacks on Keccak — CHES 2020

e Sponge construction, 1600-bit state
o Keccak-f permutation

e O - add column parities

e p - rotate lanes

e 7 - reorder lanes

e x - SBox

e . - add round constant

n Single-Trace Attacks on Keccak — CHES 2020

Attack Setting

e Unprotected software implementation on a pC

e (Part of) the input is secret mo my H,
e and used only once ¢ ¢
. . T () Ny () >
e Power measurements of a single execution 0" —> Rl "/ l::
e no differential SCA 0° - o >

e have to use (some sort of) templates

Single-Trace Attacks on Keccak — CHES 2020

Template Attacks on Hash Functions

e Typical restrictions of template attacks

e need templating device with known key
e poor portability of templates between devices

e Same for Keccak?

e often multiple calls inside a PK scheme, some with fully known data
e message hash during signing, re-encryption in decapsulation, ...

Profiling directly on target device!
no separate profiling device needed, no portability problems

n Single-Trace Attacks on Keccak — CHES 2020

Step 1: Template Matching

e Templating target: all loads/stores

o HW leakage along lanes
e assign probability vector to each part 64

e Now: combine all side channel info to find most likely key

e efficient method: Soft Analytical Side-Channel Attacks (SASCA)
[Veyrat-Charvillon et al., ASIACRYPT 2014]

Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

e variable nodes
e factor nodes
e example: XY =2

n Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph

e variable nodes m
e factor nodes
e example: XY =27 @

2. incorporate leakage information in graph

n Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph
e variable nodes
e factor nodes
e example: XY =2

2. incorporate leakage information in graph

3. run Belief Propagation

goal: find marginals of variables
® message passing principle

simplest version: enumerate inputs

important: avoid circular reasoning

H Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph
e variable nodes
e factor nodes
e example: XY =2

2. incorporate leakage information in graph

3. run Belief Propagation

goal: find marginals of variables
® message passing principle

simplest version: enumerate inputs

important: avoid circular reasoning

H Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph
e variable nodes
e factor nodes
e example: XY =2

2. incorporate leakage information in graph

3. run Belief Propagation

goal: find marginals of variables
® message passing principle

simplest version: enumerate inputs

important: avoid circular reasoning

H Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph
e variable nodes
e factor nodes
e example: XY =2

2. incorporate leakage information in graph

3. run Belief Propagation

goal: find marginals of variables
® message passing principle

simplest version: enumerate inputs

important: avoid circular reasoning

H Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph
e variable nodes
e factor nodes
e example: XY =2

2. incorporate leakage information in graph

3. run Belief Propagation

goal: find marginals of variables
® message passing principle

simplest version: enumerate inputs

important: avoid circular reasoning

H Single-Trace Attacks on Keccak — CHES 2020

Step 2: SASCA / Belief Propagation

1. model implementation as a factor graph
e variable nodes
e factor nodes
e example: XY =2

2. incorporate leakage information in graph

3. run Belief Propagation

goal: find marginals of variables
® message passing principle

simplest version: enumerate inputs

important: avoid circular reasoning

H Single-Trace Attacks on Keccak — CHES 2020

A First Factor Graph of Keccak

o Bitwise description

e each bit after each step is a variable

e Terrible performance. ..

e leakage on bytes/words, not bits

e lots of information lost during propagation

n Single-Trace Attacks on Keccak — CHES 2020

n: Clustering

e Cluster multiple bits in a single variable node

e bits along a lane
e ideally: no spreading of side-channel info

o Cluster size vs. resource usage

e runtime and memory: exp. in cluster size
e we support 8-bit and 16-bit clusters

Single-Trace Attacks on Keccak — CHES 2020

Clustering: Misalignment

e Problem: misalignment of clusters

e previous SASCA on AES: operations on bytes A :I;g

e Keccak operations not aligned Y ¥
e Example: A® ROT(B,4) 61? EA?
o Need to split clusters ROT(B, 4) ----| ' !

e requires extraction of marginals

Single-Trace Attacks on Keccak — CHES 2020

Clustering: Handling 6

e Computation of column parity

e 5-input @ node (efficient propagation)

e enumeration of all possible values: 24° (8-bit cluster)

e solution: fast convolution of distributions using
Walsh-Hadamard transform

QOO
T
o

Single-Trace Attacks on Keccak — CHES 2020

Clustering: Further Considerations

Ty

e break up clusters to deal with invertability

Single-Trace Attacks on Keccak — CHES 2020

Clustering: Further Considerations

Lol

e break up clusters to deal with invertability | A | B | C | D |
e Handling 32-bit leakage

e found efficient method to combine leakage |I|||||||I|||||||||I|| |

e convolution instead of enumeration

e Handling x

Single-Trace Attacks on Keccak — CHES 2020

Attack Runtime

e Open-source Python implementation of BP on Keccak
https://github.com/keccaksasca/keccaksasca

Restriction to first two rounds of Keccak-f
e Runtime per BP iteration (updating all nodes once)

e 38-bit clusters: ~ seconds on single core
e 16-bit clusters: ~ 1 minute using 44 cores
e 3-bit clusters sufficient in most cases

BP: iterative algorithm, repeat until convergence.
e typically < 10 iterations

Single-Trace Attacks on Keccak — CHES 2020

https://github.com/keccaksasca/keccaksasca

Attack Evaluation

e Goal: recover secret input of Keccak-f
e Evaluation tool: leakage simulations
e noisy HW-leakage of loads/stores (at typical locations)
e for 8, 16, and 32-bit implementations
e vary noise o, retrieve success rate
e Analyze impact of key size
e evaluate 128 and 256-bit keys

Single-Trace Attacks on Keccak — CHES 2020

On the Impact of the Input State

Keccak-f input: part secret, part known

Content of public part impacts success rate!

All-zero public input

mo my HO
e state = secret || 0000...
e example: SHAKE(128-bit seed) o ¢ — i‘ﬁ T -
e Random public input 0° f U= f . fl
\—/ \—/

e state = secret || rand
e example: H(msg || key)

Attacks with Random public input work much better!

Single-Trace Attacks on Keccak — CHES 2020

But why though?

o Reason: @ of f-effect T

e Observation: knowing T allows key recovery

Single-Trace Attacks on Keccak — CHES 2020

But why though?

o Reason: @ of f-effect T

e Observation: knowing T allows key recovery
o All-zero public input

e T added 4 times to 0
e same operation 4 times, averaging

Single-Trace Attacks on Keccak — CHES 2020

But why though?

Reason: @ of f-effect T

Observation: knowing T allows key recovery

All-zero public input
e T added 4 times to 0
e same operation 4 times, averaging

Random public input

e T added to 4 different values
e similar to a DPA using 4 traces

Single-Trace Attacks on Keccak — CHES 2020

Results: 8-bit Device

8-bit HW leakage, real o ~ 0.5 (XMEGA128D4)

Success Rate
o
()]
Success Rate

Random public input All-zero public input

Single-Trace Attacks on Keccak — CHES 2020

Results: 16-bit Device

16-bit HW leakage, real 0 ~ 7

2 2
3] ©
o o
B OB | 205¢
Q @
O 1)
o ——a—— 128bit &
(7] —»—— 256bit (2] —a8—— 128bit
0 : 0 : 5888558
0 1 2 3 0 1 2 3
o o
Random public input All-zero public input

Single-Trace Attacks on Keccak — CHES 2020

Results: 32-bit Device

32-bit HW leakage, real o ~ 0.4 - 3 (STM32F303)

1

Success Rate
o
(6]

o

Random public input

Single-Trace Attacks on Keccak — CHES 2020

Conclusion

Single-trace attacks are a considerable threat ...

e especially for 8/16-bit implementations, situation less clear for 32-bit devices

But ...
e we used a simple leakage model (simulations with univariate HW templates)

e more sophisticated attacker will fare better (remember: on-device profiling)

Must always include (basic) countermeasures ...
e hiding (shuffling, dummy operations, etc.) effective

e masking also an option, but some restrictions

Single-Trace Attacks on Keccak — CHES 2020

https://github.com/keccaksasca/keccaksasca

Thank you!

https://github.com/keccaksasca/keccaksasca

