

Analyzing the Shuffling Side-Channel Countermeasure for Lattice-Based Signatures

Peter Pessl IAIK, Graz University of Technology, Austria

Indocrypt 2016, December 12

www.iaik.tugraz.at

Accurate depiction of quantum computing

Credit: *The Binding of Isaac: Rebirth* by Edmund McMillen

Introduction

- Lattice-based cryptography is a promising candidate for PQ
- **Efficient schemes and implementations**
- \blacksquare Implementation security neglected this far
	- very first attack on lattice-based signatures at CHES 2016
- Shuffling proposed as a possible countermeasure
	- **Protect Gaussian samplers**
	- ...but no analysis given

Our contribution

- In-depth analysis of shuffling in context of lattice-based signatures
- Side-channel analysis of a Gaussian sampler implementation
- New attack on shuffling *unshuffling* and key recovery
	- exploit properties of intermediates
- **Show that shuffling** *can* be effective
	- **but only if done right**

BLISS - Bimodal Lattice Signatures [\[DDLL13\]](#page-24-0)

- **BLISS** Bimodal Lattice Signature Scheme
	- Ducas, Durmus, Lepoint, Lyubashevsky (CRYPTO 2013)
- Works over ring $\mathcal{R}_q = \mathbb{Z}_q[x]/\langle x^n + 1 \rangle$
	- $n = 512$
	- polynomials a,b , $ab = aB$, nega-cyclic rotations
- **Discrete Gaussians** $D_{\sigma}(x)$

BLISS - Bimodal Lattice Signatures [\[DDLL13\]](#page-24-0)

Input: Message μ , public key $A = (a_1, q - 2)$, private key $S = (s_1, s_2)$

Output: A signature (z_1, z_2^{\dagger}, c)

- 1: $\mathbf{y}_1 \leftarrow D_{\sigma}^n$, $\mathbf{y}_2 \leftarrow D_{\sigma}^n$
- 2: **u** = $\zeta \cdot a_1 \mathbf{v}_1 + \mathbf{v}_2$ mod 2*q*
- 3: **c** = H($\vert u \vert_d$ mod $p \vert \vert u$)
- 4: Sample a uniformly random bit *b*
- 5: **z**₁ = **y**₁ + $(-1)^b$ **s**₁**c**
- 6: **z**₂ = **y**₂ + $(-1)^b$ **s**₂**c**
- 7: Continue with some probability *f*(**Sc**, **z**), restart otherwise
- 8: **return** $(z_1, z_2^{\dagger} = (\lfloor u \rfloor_d \lfloor u z_2 \rfloor_d), \mathbf{c})$

Efficient Gaussian Sampling [\[PDG14\]](#page-24-1)

- Gaussian convolution: sample twice from a smaller distribution Gaussian convolution: sample twice from a smaller distribution
(1) $\sigma' = \sigma/\sqrt{1 + k^2}$ (2) $y', y'' \leftarrow D_{\sigma'}$ (3) $y = k y' + y''$
- CDT sampling: precompute $T[y] = P(x < y | x \leftarrow D^+_{\sigma})$ (1) $r \leftarrow [0, 1)$ (2) return $T[y] < r < T[y + 1]$ (binary search)
- Guide tables: Speed up binary search (1) sample first byte of *r* (2) lookup range in table

A Cache Attack on BLISS [\[GBHLY16\]](#page-24-2)

- **Partial recovery of the noise vector** V_1
	- Equation: $z_{ji} = y_{ji} + (-1)^{b_j} \langle s_1, c_{ji} \rangle$
- Filter equations with $z_{ij} = y_{ij} \implies \langle s_1, c_{ij} \rangle = 0$
	- gather $n = 512$ equations over multiple signatures into **L**
- \blacksquare Solve $s_1L = 0$
	- error correction using a lattice reduction

Shuffling as a Countermeasure

- **Protecting samplers appears to be difficult**
	- no inherently constant runtime samplers, data-dependent branches
- \blacksquare Idea: sample **y**, then shuffle it
	- **Exercise 1** breaks connection between sampling time and index
	- simple implementation, low overhead
- Previously proposed [\[RRVV14,](#page-24-3) [Saa16\]](#page-24-4)
	- ...but no security analysis thus far

Shuffling Variants

- **Single-Stage Shuffling**
	- $\mathbf{y}' \leftarrow D^n_{\sigma}, \mathbf{y} = \mathsf{Shuffle}(\mathbf{y}')$
- **Two-Stage Shuffling** [\[Saa16\]](#page-24-4)
	- shuffling twice, combine with [\[PDG14\]](#page-24-1)
	- $\mathbf{y}', \mathbf{y}'' \leftarrow D^n_{\sigma'}, \mathbf{y} = k \cdot \mathsf{Shuffle}(\mathbf{y}') + \mathsf{Shuffle}(\mathbf{y}'')$

How much do Samplers leak?

- **Split-Sampler [\[PDG14\]](#page-24-1)**
	- **sampling from** *small* distribution D_{σ}
	- two classified samples to recover *y*
- **ARM Cortex M4F (TI MSP432)**
- **EM** measurement on core-voltage regulation
- SPA-like attack (single trace)

Recovering the Control Flow

- **Recover the steps in the binary search**
- Record a reference trace for all possible jumps
	- match using mean of squared error
- **Perfect accuracy**

Recover the Sampled Value

- Control flow alone not sufficient
	- quide tables \rightarrow initial range for binary search
- **Use template attacks**
	- templates for all values and possible flows
- Success highly dependent on nr. of comparisons in binary search

SCA Results

Success rate with > 1 comparison: 99.9%

Modeled Adversaries

A1 - perfect adversary

- knows all sampled values
- evaluate theoretical limits of shuffling
- **A2 profiled SCA adversary**
	- **F** recovers all samples requiring 2 or more comparisons
	- $|{\rm sample}| > 47, 1.5\%$
- **A3 non-profiled SCA adversary**
	- samples that are uniquely determined by control flow
	- $|$ sample $| > 54, 0.5%$

An Attack on Shuffling

- Re-assign samples to index
	- **assumption: shuffling is leak-free**
- Observation in $\mathbf{z}_1 = \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c}$
	- $y \leftarrow D_{\sigma}^n$, $\sigma = 215$
	- **s**₁, **c** more or less sparse, small coefficients

Coefficient-wise Distributions

An Attack on Shuffling

$$
\blacksquare \mathbf{z}_1 = \mathbf{y}_1 + (-1)^b \mathbf{s}_1 \mathbf{c} \approx \mathbf{y}_1
$$

- Given a *y*, check for *proximity* to all *zⁱ* ∈ **z**
	- if only one *z_i close*: *z_i* − *y* = $(-1)^b$ \langle **s**₁, **c**_{*i*}</sub> \rangle
- Success for large $|z_i|, |y|$ (tail of D_{σ})

Key Recovery

- Exercise Keep only highly probable equations ($P > 0.99$)
- Key recovery: similar to Groot Bruinderink et al. [\[GBHLY16\]](#page-24-2)
	- gather equations $z_{ji} = y_{ji} + (-1)^{b_j} \langle s_1, \mathbf{c}_{ji} \rangle$
	- \blacksquare *b* recoverable with SCA: $n = 512$ equations
	- *b* not recoverable: filter $z_{ii} = y_{ii}$ (factor 6.6)

Results - Single Stage

- Number of required signatures increases only slightly
- A2, A3: classifiable samples in the tail of D_{σ}
	- ... which is where the matching works

Adaptation to Two-Stage Shuffling

 $\mathbf{y} = k \cdot \mathsf{Shuffle}(\mathbf{y}') + \mathsf{Shuffle}(\mathbf{y}'')$

1.
$$
\mathbf{z}_1 = k\mathbf{y}' + \mathbf{y}'' + (-1)^b \mathbf{s}_1 \mathbf{c} \approx k\mathbf{y}'
$$

\n• match \mathbf{z}_1 and $k\mathbf{y}'$

2.
$$
z_i - ky' = y'' + (-1)^b \langle s_1, c_i \rangle \approx y''
$$

match $z_1 - ky'$ and y''

Results on Two-Stage Shuffling

- Number of required signatures increases drastically
	- need to match twice, lower difference of std. dev.
- Small difference between A1 and A2
	- "matcheable" samples are in the tail, where A2 can detect them

Conclusion

- Shuffling once is pointless
- Shuffling twice increases signature requirements drastically
	- effective countermeasure, but still circumventable
	- different splittings and more stages might be more effective
- Generic analysis with simplifications
	- no leakage from shuffling as such, from PRNG, from additions etc.
	- further reduces signature count

Analyzing the Shuffling Side-Channel Countermeasure for Lattice-Based Signatures

Peter Pessl IAIK, Graz University of Technology, Austria

Indocrypt 2016, December 12

www.iaik.tugraz.at

Bibliography I

- [DDLL13] Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky, Lattice Signatures and Bimodal Gaussians. In Ran Canetti and Juan A. Garay, editors, *CRYPTO 2013*, volume 8042 of *LNCS*, pages 40–56. Springer, 2013.
- [GBHLY16] Leon Groot Bruinderink, Andreas Hülsing, Tanja Lange, and Yuval Yarom. Flush, Gauss, and Reload - A Cache Attack on the BLISS Lattice-Based Signature Scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors, *CHES 2016*, volume 9813 of *LNCS*, pages 323–345. Springer, 2016. full version available at <http://eprint.iacr.org/2016/300>.
- [PDG14] Thomas Pöppelmann, Léo Ducas, and Tim Güneysu. Enhanced Lattice-Based Signatures on Reconfigurable Hardware. In Lejla Batina and Matthew Robshaw, editors, *CHES 2014*, volume 8731 of *LNCS*, pages 353–370. Springer, 2014. VHDL source code available at <http://sha.rub.de/research/projects/lattice>.
- [RRVV14] Sujoy Sinha Roy, Oscar Reparaz, Frederik Vercauteren, and Ingrid Verbauwhede. Compact and Side Channel Secure Discrete Gaussian Sampling. Cryptology ePrint Archive, Report 2014/591, 2014. <http://eprint.iacr.org/2014/591>.
- [Saa16] Markku-Juhani O. Saarinen. Arithmetic Coding and Blinding Countermeasures for Lattice Signatures: Engineering a Side-Channel Resistant Post-Quantum Signature Scheme with Compact Signatures. Cryptology ePrint Archive, Report 2016/276, 2016. http://eprint.jacr.org/2016/276 Note: to appear in Journal of Cryptographic Engineering.